Select Page
Collab Log #004: Epic 5 hour soldering session with Beck and Brenda

Collab Log #004: Epic 5 hour soldering session with Beck and Brenda

Today was a big day in terms of Robot Missions milestones! Beck and Brenda are the first beta testers of assembling the Bowie Brain Kit! Woohoo! They will be following along all the steps to get their own Bowie brain alive. This was a pretty epic work session. They spent 5 hours working away on it, by the end, they didn’t even realise how much time had passed! It was 11:30pm by the time we left. 😀 Here is a video update:

Going from a small amount of previous soldering and robot experience, to now soldering this board, they mentioned that the instructions and photos have been super helpful. It was amazing to see their progress on this. Sometimes there were mistakes, but it was ok because we fixed them along the way.

 

Beck and Brenda found a lot of bugs that should be fixed! Here’s the list of them:

  • Overview:
    Just remember – if something is extending over the edge of the board before soldering, it’s probably in the wrong place. Avoid cold solder. Resistors do not have directionality, but most of the other parts do. Oh yeah, and you can remove the tape after it’s done being used to hold the soldered component in place.
  • Part 2, Step 13 – Should be resistors inserted into R10 and R11 (it’s plural). Make sure the leads of both resistors are not touching.
  • Part 2, Step 16 & 17 – It is not clear what direction the diode should go in. Polarity
  • Part 2, Step 18 – ‘Resistor’ should be ‘diode’ 😛
  • Part 3, Step 3 – Need to write about using tape instead of twisting the leads, because the leads from the speaker can snap and break
  • Part 3, Step 8 – ‘Resistor’ should be ‘LED’ 😛
  • Part 3, Step 12 – LEDs not resistors
  • Part 4, Step 10 – Could also add something about using tape to secure the capacitor in place prior to soldering it and snipping the leads
  • Part 4, Step 2 & 3 – There is no directionality for the PN2222A, should mention what side the flat gets inserted
  • Part 4, Step 6 – Directionality?
  • Part 4, Step 8 – Do not flip the board
  • Part 4, Step 14 – Needs clarification that the row of holes the screw terminals go in are the row of Z3,2,1 – not the holes nearest the edge of the board.
  • Part 5, Step 1 – Should be Xbee headers (shallow F headers) instead of just shallow F headers to correspond with the packing list properly
  • Part 5, Step 2 – Add a bit about keeping the headers perpendicular to the board, not inserting them crooked
  • Part 5, Step 4 – Should also mention about how adding in an Xbee as a placeholder will improve the reliability of these headers (just based on previous experience of the forks getting jammed)
  • Part 5, Step 5 – You don’t have to flip the board
  • Part 5, Step 8 – Orientation

Way to go Brenda and Beck on this progress! More to come next week.

Collab Log #002: Eng. design project plan

Collab Log #002: Eng. design project plan

We received info from the Master’s engineering design team about their project plan. Their project plan is very focused, which is good to hopefully provide a useful result. As well, it contains a stretch goal. Later this week, we will have a chance to meet and discuss what resources will be needed.

Here is some info from their plan:

Our project would be divided into 3 parts, 2 fundamental parts and 1 advanced part

1. Mechanical design of the mechanical structure (Pan-Tilt Mount) – Fundamental

Object: This pan-tilt mount should be able support 360 version of camera

2. Environment configuration of robot vision system – Fundamental

Object: Installing tensorflow on Raspberry Pi, connecting Raspberry Pi and IR camera. After

configuration, the picture captured by IR camera should be able displayed in tensorflow on Raspberry Pi

3. Object detection and recognition based on IR image – Advanced

Object: Designing object detection and recognition algorithm based on IR image using Tensorflow

We look forward to working with them and for developing a new Bowie module. More to come later in the week!

Collab Log #001: Master’s engineering design

Collab Log #001: Master’s engineering design

For University of Ottawa’s Engineering Design course GNG5140, as a client we were paired with a group to work on something for Robot Missions. Today we had our first informational meeting — Meet the team!

Here is some info about it from the Winter 2020 client package:

GNG5140 is an open ended, hands-on engineering design course that provides students with fundamentals and advanced concepts of the engineering design process from client empathy to prototyping and testing. Students work directly with clients to solve a real societal need. There is a strong component of teamwork and lifelong learning.

Students taking this course are most likely in MEng (Master’s of Engineering). The students work in teams of 4-6 and are from all engineering departments.

At the end of the semester the students should have produced a final prototype with a user manual. The final prototypes from the successful groups will be available to the client to test with, keep for use, etc. The other prototypes will be disassembled to recycle parts from them.

We’ll be meeting about 4 times over the course of the semester, a total time commitment of about 10 hours. It all culminates in Design Day, where the students will then exhibit their work!

We’ve collaborated with engineering design classes in the past, and it was a blast. No doubt that this one will also be fun too. Can’t wait to see what the team will make, and will post updates about it here.